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1. INTRODUCTION

An unresolved problem in remote sensing

concerns the analysis of satellite imagery contain-

ing both single and multiple cloud layers. While

cloud parameterizations are very important both in
global climate models and in studies of the Earth's

radiation budget, most cloud retrieval schemes,

such as the bispectral method used by the Interna-

tional Satellite Cloud Climatology Project

(ISCCP), have no way of determining whether

overlapping cloud layers exist in any group of

satellite pixels. Coakley (1983) used a spatial co-

herence method to determine whether a region

contained more than one cloud layer. Baum et al.

(1995) developed a scheme for detection and

analysis of daytime multiple cloud layers using

merged AVHRR (Advanced Very High Resolution

Radiometer) and HIRS (High-resolution Infrared

Radiometer Sounder) data collected during the

First ISCCP Regional Experiment (FIRE) Cirrus II

field campaign. Baum et al. (1995) explored the

use of a cloud classification technique based on

AVHRR data. This study examines the feasibility
of applying the cloud classifier to global satellite

imagery.

Cloud classification based upon textural

and spectral features provides a promising ap-

proach for determining whether mixed cloud or

surface types exist within a group of pixels. A
number of artificial intelligence approaches to

cloud classification have been reported in the lit-
erature that involve maximum likelihood estima-

tors (Ebert, 1987; Garand, 1988), neural netw'orks

(Welch et aL, 1992), or fuzzy logic (Tovinkere et

al., 1993). For this investigation, a fuzzy, logic

algorithm is developed for daytime midlatitude

and tropical cloud retrieval. This algorithm is ex-

tremely adaptable to situations in which more than
one cloud type is present. The strength of fuzQ'

logic lies in its ability to work with patterns that

may include more than one class, facilitating

greater information extraction from satellite ra-

diometric data. The development of the fuzz), logic

rule-based expert system involves training the

fuzzy classifier with spectral and textural features

calculated from accurately labeled 32x32 pixel

arrays, or samples, of Advanced Very High Reso-
lution Radiometer (AVHRR) 1.1-km data. A so-

phisticated new interactive satellite imagery

visualization system (SIVIS) is used to label

samples chosen from scenes. The training samples

are chosen from predefined classes, chosen to be

clear-sky (ocean, land, desert, or snow), unbroken
stratiform, broken stratiform, and cirrus. The

fuzzy logic method has the ability to assign mul-
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tiple cloud classes to a given sample that contains,

for example, both thin cirrus and low-level stratus
clouds. Further details of the fuzzy logic classifier

may be found in Tovinkere et al. (1993). This pa-

per focuses primarily on the development of the
classifier for use with global data.

2. DATA

The fuzzy classifier is trained and tested

using global NOAA-11 1.1-km AVHRR satellite

imagery collected between 1992 and 1994 during
winter, summer, and uansitional season months.

The spectral data consist of AVHRR channels 1

(0.55-0.68 micron), 2 (0.725-1.1 micron), 3 (3.55-

3.93 micron), 4 (10.5-11.5 micron), and 5 (11.5-

12.5 micron), which include visible (channel 1),

near-infrared (channels 2 and 3), and infrared

(channels 4 and 5) wavelengths. Channel 1 and 2
radiances are converted to bidirectional reflec-

lances. The near-infrared (NIR) and infrared (IR)
radiances are calculated from the raw counts pro-

vided in the NOAA Level 1-B data stream using

the nominal calibration (Kidwell, 1991). The IR

channels also include nonlinearity corrections re-

ported by Brown et ai. (1993).
Meteorological data are provided by

global National Meteorological Center gridded

temperature, humidity, and wind profiles at 0000

and 1200 UTC. An estimation of air mass type is

derived from these profiles.

, TEXTURAL AND SPECTRAL

FEATURES

The textural features are computed usmg

the gray level difference vector (GLDV) approach

(Haralick et al., 1973; Weszka et aL, 1976; Chen

et al., 1989). The GLDV approach is based on the

absolute differences between pairs of gray levels 1

and J found at a distance d apart at angle • gath a

fixed direction. The GLDV probability density

function P(m)d. ® is defined for m = I - J, where 1

and J are the corresponding gray levels having a
value between 0 and 255. The function P(m)¢ ®

(henceforth P(m), where the dependence of P(m)

on d and •. is implicitly assumed) is obtained by

normalizing the gray-level frequencies of occur-

rence by the total number of frequencies. Once
P(m) has been formed, the following textural

measures are computed for each of the five

AVHRR spectral channels assuming a pixel sepa-
ration distance of d = 1 and at an angle • = 0°.

The textural features used in this study are the

mean, standard deviation, contrast, angular second

moment, entropy, and local homogeneity. Expla-
nations of these features may be found in Chen et

al. (1989).

The spectral features are formed from the

gray level representation of the bidirectional re-
flectances for AVHRR channels 1 and 2 and from

the gray level representation of brightness tem-

peratures for the NIR and IR channels. The gray

level representation means that the range of pos-
sible values is scaled between 0-255.

4. METHODOLOGY

4.1 Description of Cloud Classes

The samples are separated initially into

four major groups: clear-sky, low-level cloud, mid-

level cloud, and high-cloud. Individual cloud

samples are placed into a group based on cloud-top
height. This has particular importance for convec-

tive clouds since they can fall into any cloud group

depending on their state of development. Within a

major group, each sample is labeled further with

its appropriate synoptic cloud type, such as cirrus,
cirrostratus, cirrocumulus, etc. These subclasses

play an important role when separating uniform
from broken cloud samples. For example, in the

low-level cloud class, stratus would be considered
uniform while cumulus would be considered bro-

ken.

4.2 Derivation of Training Sets

For the classifier to be useful for analysis

of global satellite imagery, it must be robust

enough to operate over a wide range of conditions.

The ability of the classifier depends on the quality

of the training set. To arrive at the most robust

possible training seL arrays were chosen and la-

beled from a variety of locations across the world
from summer, winter, and transitional seasons.

Thus, the samples collected are from a variety of

air masses ranging from sub-arctic to sub-uopical.

The labeling process was facilitated with the help

of an interactive software package called the sat-

ellite image visualization system (SIVIS). SIVIS

provides a range of image processing functions

along with morphological operations such as dila-
tion and erosion. In addition to the graphics and

image-processing capabilities, SIVIS software fa-
cilitates the ingest and display of ancillary data

from a variety of sources. Among the ancillary

348 AMERICANMETEOROLOGICALSOCIETY



datasetsarea I-minuteresolutionglobalmap that

providesthelocationofrivers,coastlines,stateand

countryboundaries,and islands;a 10-minutemap

thatprovidessurfaceelevationtothenearest30 m;

a 10-minute map for ecosystem type;and a 10-

minute map that providespercentageof surface

water cover.SIVIS can displaytemperatureand

humidityprofiles,NWS surfacesynopticobserva-

tions,and aircraftflighttracks.The labelingproc-

ess involvesmore than visualinspectionof satel-

liteimagery,takingintoaccountevidenceoftem-

peratureinversions,maxima in the humidity pro-

file,meteorologicalanalyses,surfaceelevationand

ecosystem type,and other ancillary data.

4.3 Cohesion of Cloud Classes

From the full set of data samples, a

training set is developed for each class. For each of

the data samples within a given class, a set of sta-

tistical tests is performed with the radiance data.

As examples, two of the statistical features calcu-
lated are the mean value and standard deviation of

the radiances for each channel in a data sample.

A hierarchical clustering analysis is performed
subsequently using the the set of statistical values

for each sample. The purpose of clustering is two-
fold. First, sample clustering provides insight as to

whether outliers exist within a group of samples. If

only a few oufliers exist, the suspect samples are

re-inspected to determine whether they were inap-

propriately labeled. If many outliers exist, another

category may need to be developed. This ensures

that the classifier is being developed for a set of

samples that exhibit uniformity. Second, clustering

provides a mechanism to determine whether a set

of data samples forms natural groupings as we

expect. For example, it may become necessary to

form groups of cloud samples based on air-mass

type. Low clouds in an arctic air mass may exhibit
much different characteristics than low clouds in

an equatorial air mass.

5. RESULTS

Details regarding the mechanics of

building a fuzzy logic classifier may be found in

Tovinkere et al. (1993) or Baum et al. (1995) and

will not be repeated here. Classification results
will be shown for cloud classification over differ-

ent surface types such as desert, ocean, and vege-

tated land. Improvements over conventional cloud

classification methods based solely upon threshold

techniques will be demonstrated.
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